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Abstract. The thermal conductance and the Lorentz number for fractional exclusion particles are
investigated in the ballistic regime. By using Ramo–Shockley theory, it is shown that the thermal
conductance is independent of the statistical properties under the particle complete degeneracy
condition, but the Lorentz number is not, and they are both independent of the transport material.

In recent years, investigations of quantum transport in material have uncovered many interesting
types of behaviour in non-equilibrium [1, 2]. In this respect, a theoretical study of the thermal
conductance of a charged-particle carrier and a phonon carrier has been made [3–5]. These
results show that in a one-dimensional transport wire the thermal conductance has a universal
unit K2π2/3h (K is the Boltzmann constant andh is the Planck constant), if the transport
happens in the carrier ballistic regime. By using the linear responding theory, some authors
[6–8] have calculated the electronic thermal conductance and the Lorentz number for one-
dimensional ballistic transport, and provided fundamental properties of the physical quantities.
They naturally obtained the universal thermal conductance for the particle degenerate case.
In [9, 10], by using Haldane’s concept of fractional exclusion statistics and the Laudauer
formulation [11, 12] of transport theory, it has been shown that the thermal conductance is
independent of the statistics in one-dimensional ballistic transport in the completely degenerate
case.

The aim of this letter is to use Ramo–Shockley theory [13] to present the conductance and
the Lorentz number for fractional statistical particles in a one-dimensional ballistic transport
wire by using the relaxation time model. We will see that the Lorentz number depends on the
particle’s statistical properties through the parameterg, but the thermal conductance does not.

Referring to Ramo–Shockley theory [14], the total current operatorsIµ(t) can be expressed
as

In(t) = 1

L

∫ L/2

−L/2
dz
∫ ∞
−∞

dk εnk
h̄k

m
g(k, z, t) (n = 0, 1) (1)

whereI0(t) andI1(t) represent the particle and energy current, respectively.L is the wire
length,εk is the kinetic energy of the particle andg(k, z, t) represents the Wigner function.

We define the auto-correlation function

Cn,l(t) = 1
2〈δIn(0) · δIl(t) + δIn(t) · δIl(0)〉 (n, l = 0, 1) (2)
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where the fluctuation of the current isδIn(t) = In(t) − 〈In(t)〉. Substituting the current (1)
into the auto-correlation function (2), we have

Cn,l(t) = 1

2

(
h̄

mL

)2

∫ L/2

−L/2
dz
∫ L/2

−L/2
dz′
∫ ∞
−∞

dk
∫ ∞
−∞

dk′ kk′ εnk ε
l
k′ [δf (k

′, z′, 0; k, z, t) + δf (k, z,0; k′, z′, t)] (3)

where the fluctuation function

δf (k′, z′, 0; k, z, t) = 〈g(k′, z′, 0)g(k, z, t)〉 − 〈g(k′, z′, 0)〉〈g(k, z, t)〉.
In the relaxation time model the fluctuation takes the form [14]

δf (k′, z′, 0; k, z, t) = δf
(
k′, z′, 0; k, z− h̄kt

m
, 0

)
exp

(
− t

τc

)
(4)

whereτc is the relaxation time. It turns out that the problem consists of the calculation
of δf (k′, z′, 0; k, z − (h̄kt/m), 0). As in the case of the Bose–Einstein and Fermi–Dirac
distributions, the fluctuation of fractional particles is given by

δf (k′, z′, 0; k, z,0) = 1

π

∂η

∂x
δ(k − k′)N(k, z, z′) (5)

whereN(k, z, z′) is an arbitrary normalized function in the system. This function describes
the space correlation at equal times between the pointz andz′ of the statek. The interesting
result is that it plays no role in the auto-correlation function, i.e.

∫ L/2
−L/2N(k, z, z

′) dz′ = 1. As
a consequence, the final result should be independent of the assumption of the coherent length.
The distribution functionη of the fractional particle in (5) is

η(x, g) = 1

W(x, g) + g
(6)

wherex = (ε − µ)/KT ,K is the Boltzmann constant, andT andµ are the temperature and
the chemical potential, respectively. The functionW(x, g) satisfies the general equation

Wg(x, g)[1 +W(x, g)]1−g = ex. (7)

Obviouslyg = 0 corresponds to the Bose–Einstein distribution andg = 1 corresponds to
the Fermi–Dirac distribution. Combining (3) with (4), the auto-correlation function is written
as

Cn,l(t) = 1

π

(
h̄

mL

)2

et/τc
∫

dz dz′ dk k2εn+l
k

∂η

∂x
N

(
k, z− h̄kt

m
, z′
)

= 1

π

(
h̄

mL

)2

et/τc
∫ L/2

−L/2
dz
∫ (m/h̄t)(z+(L/2))

(m/h̄t)(z−(L/2))
dk k2εn+l

k

∂η

∂x

wherem is the mass of the particle. Since the integrated function in the above expression is
independent of the argumentz, we exchange the integral argumentsz andk, and then have

Cn,l(t) = 2

π

(
h̄

mL

)2

et/τc
∫ mL/h̄t

0
dk k2εn+l

k

∂η

∂x

(
L− h̄t

m
k

)
.

Using the relation between the momentum and the energy of the particleε = h̄2k2/2m,
the auto-correlation functionCnl(t) can be expressed as

Cnl(t) = 23/2

πh̄Lm1/2
et/τc

∫ L2m/2t2

0
dε εn+l+1/2 ∂η

∂x

(
1− t

L

(
2ε

m

)1/2)
. (8)
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In order to give the thermal conductivity, the noise spectral density should be calculated.
First it is noted that

Sn,l(ω) = q
∫ ∞
−∞

exp(iωt)Cn,l(t) dt (9)

whereq is the degeneracy degree of the carriers. Our concern is the static spectral density.
Due to the explication of the integrated function forε, we first integrate the argumentt in the
ballistic regime,t/τc � 1, which leads to

Sn,l(0) = q

h

∫ ∞
0

dε εn+l ∂η(x, g)

∂x
= qKT

h

∫ ∞
x0

dx (KT x +µ)n+l ∂η(x)

∂x
(10)

wherex0 = −µ/KT . By using (6), we can calculate the function
∂η(x)

∂x
= −W(x)[1 +W(x)]

(g +W(x))3
.

After some calculation it turns out that wheng = 0 or 1 the integral forSµν(0) is easy to
perform and gives the same result as that in [3–5], but for the fractional particles we are unable
to integrate directly. For simplicity, we first consider the completely degenerate case in which
µ/KT →∞. We note that limw→0 x = −∞ for g 6= 0 and limw→∞ x = ∞ for anyg > 0.
This shows that the integral forx can be replaced by an integral overW and the integral space
is from 0 to∞, i.e.

S
deg

n,l (0) =
qKT

h

∫ ∞
0

dW (KT x +µ)n+l 1

(W + g)2
(11)

wherex = ln(W + 1) + g(lnW − ln(W + 1)). After integration the results are

S
deg

00 (0) =
qKT

hg
S
deg

01 (0) = Sdeg10 (0) =
µqKT

hg
S
deg

11 (0) =
qKT

h

π2

3
+
µ2qKT

gh
.

(12)

The kinetic coefficients areLn,l(ω) = LSn,l(ω)/(KT ) and the thermal conductivity is

κ = 1

T

[
L11(0)− L10(0)L01(0)

L00(0)

]
.

Putting the above results together, we obtain

κ = K2π2

3h
qLT . (13)

Furthermore, the thermal conductance in the ballistic regime isκ ′ = κ/L = (K2π2/3h)qL.
It should be noted that if the particles are charged, the electric current should be the particle
current multiplied by the charge carried by the carriers, i.e.S00 should be multiplied bye2

andS01 = S10 by e, butS11 is left unchanged. It is readily seen that the thermal conductivity
does not change for the charged carrier, and the electric conductance in the ballistic regime
is σ(0) = e2L00(0)/L = e2q/hg. This shows that the Lorentz shape number takes the form
L0(0) = κ ′/σ(0)T = (π2K2/3e2)g, which depends on the statistical properties of the carriers
through parameterg.

In conclusion, a rigorous calculation of the thermal conductance for the fractional
exclusion particle in one-dimensional ballistic transport has proved that in complete degeneracy
this physical quantity is independent of the statistical properties through the parameterg, but
the Lorentz number is not. We also show that both of the quantities are independent of the
characteristics of the transport material. Ifg = 1 is selected, our conclusion coincides with
Fermion-carrier case.
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